Methods for monitoring blood glucose in pregnant women with diabetes to improve outcomes


Original post, click here

This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.

Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.

1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.

2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks’ gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.

3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.

4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.

5. CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks’ gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.

6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks’ gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks’ gestation) were not reported.